Alamolhodaei, H. (2009). A working memory model applied to mathematical word problem solving.
Asia Pacific Education Review,
10(2), 183-192. DOI:
10.1007/s12564-009-9023-2.
Allen, K., Higgins, S., & Adams, J. (2019). The relationship between visuospatial working memory and mathematical performance in school-aged children: A systematic review.
Educational Psychology Review, 1-23. DOI:
10.1007/s10648-019-09470-8.
Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20-29. DOI: 10.1016/j.jecp.2009.11.003
Azizi Mahmmodabad, M., Liaghatdar, M. J., & Oreyzi, H. (2019). The effectiveness of teaching image-based arithmetic problems on students' active memory performance and their processing efficiency. Journal of Educational Psychology Studies, 16(35), 165-190. Doi: 10.22111/jeps.2019.5056 [In Persian]
Bedyńska, S., Krejtz, I., & Sedek, G. (2019). Chronic stereotype threat and mathematical achievement in age cohorts of secondary school girls: Mediational role of working memory, and intellectual helplessness.
Social Psychology of Education,
22(2), 321-335. DOI:
10.1007/s11218-019-09478-6
Campbell, J. I., Fuchs-Lacelle, S., & Phenix, T. L. (2006). Identical elements model of arithmetic memory: Extension to addition and subtraction.
Memory & Cognition,
34(3), 633-647. DOI:
10.3758/BF03193585
Campbell, J. I. D., & Xue, Q. (2001). Cognitive arithmetic across cultures.
Journal of Experimental Psychology: General, 130, 299–315. DOI:
10.1037/0096-3445.130.2.299
Carpenter, T. P., & Moser, J. M. (1984). The acquisition of addition and subtraction concepts in grades one through three. Journal for Research in Mathematics Education, 15(3), 179-202. https://doi.org/10.2307/748348
Davoudi, K., Rostgar, A., & Alamian, V. (2011). First-grade math teacher's book. General Department of Textbook Printing and Distribution. [In Persian]
De Corte, E., & Verschaffel, L. (1981). Children's solution processes in elementary arithmetic problems: Analysis and improvement.
Journal of Educational Psychology, 73, 765–779.
https://doi.org/10.1037/0022-0663.73.6.765
Demetriou, A., Makris, N., Tachmatzidis, D., Kazi, S., & Spanoudis, G. (2019). Decomposing the influence of mental processes on academic performance.
Intelligence,
77, 101404.
https://doi.org/10.1016/j.intell.2019.101404
Dewolf, T., Van Dooren, W., & Verschaffel, L. (2017). Can visual aids in representational illustrations help pupils to solve mathematical word problems more realistically?
European Journal of Psychology of Education, 32, 335-351. DOI:
10.1007/s10212-016-0308-7
Educational Research and Planning Organization. (2023). First-grade math. Offset Company. [Persian]
Friso-Van den Bos, I., Van der Ven, S. H., Kroesbergen, E. H., & Van Luit, J. E. (2013). Working memory and mathematics in primary school children: A meta-analysis.
Educational Research Review, 10, 29-44. DOI:
10.1016/j.edurev.2013.05.003
Fuchs, L. S., Fuchs, D., Compton, D. L., Hamlett, C. L., & Wang, A. Y. (2015). Is word-problem solving a form of text comprehension?
Scientific Studies of Reading,
19(3), 204-223. DOI:
10.1080/10888438.2015.1005745
Fuchs, L., Fuchs, D., Seethaler, P. M., & Barnes, M. A. (2020). Addressing the role of working memory in mathematical word-problem solving when designing intervention for struggling learners. ZDM Mathematics Education, 52, 87-96. https://doi.org/10.1007/s11858-019-01070-8
Gall, M., Borg, W., & Gal, J. (2004/1381). Qualitative and quantitative research methods in educational sciences and psychology. Translated by Ahmad Reza Nasr et al. Tehran: Samt Publications. [Persian]
Heejung, L., & Hyunjoo, Y. (2023). A study on the representation utilization ability of academic achievement levels in mathematics problem solving: Focusing on the 4th and 6th grades of elementary school.
Hossaini Khah, K., Nikdel, F., & Noushadi, N. (2019). The effectiveness of training self-regulation strategies on processing efficiency and working memory function of high school girl students. Research in Cognitive and Behavioral Sciences, 8(15), 33-48. Doi: 10.22108/cbs.2020.111297.1206 [In Persian]
Izadi, M. (2012). A comparative content analysis of the first-grade math curriculum goals and content of the math textbook in Iran, Japan and America (State of California). Unpublished Masterʼs Thesis). Islamic Azad University Fars Science and Research Branch, Shiraz, Iran. [Persian]
Kamii, C., Lewis, B. A., & Kirkland, L. D. (2001). Fluency in subtraction compared with addition.
The Journal of Mathematical Behavior, 20, 33–42. DOI:
10.1016/S0732-3123(01)00060-8
Lathifaturrahmah, L., Nusantara, T., Subanji, S., & Muksar, M. (2024, February). Analysis of mathematics students’ problem-solving skills in making prediction mathematical representations. In AIP Conference Proceedings (Vol. 3049, No. 1). AIP Publishing.
Moradi, A., Afsardeir, B., Parhoon, H., & Sanaei, H. (2016). Cognitive performance of patients with Multiple Sclerosis (MS) in autobiographical, working and prospective memory in comparison with normal people. International Journal of Behavioral Sciences, 10(1), 49-54.
Moradi, A., Cheraghi, F., & Farahani, M. (2008). The effect of anxiety and tasks presentation manner on processing efficiency and performance of components of working memory. Journal of Modern Psychological Researches, 3(11), 77-98. [In Persian]
Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity.
Journal of Educational Psychology,
91(2), 358. DOI:
10.1037/0022-0663.91.2.358
Panaoura, A. (2007). The interplay of processing efficiency and working memory with the development of metacognitive performance in mathematics.
The Mathematics Enthusiast,
4(1), 31-52. DOI:
10.54870/1551-3440.1057
Passolunghi, M. C., & Costa, H. M. (2019). Working memory and mathematical learning.
In A. Fritz, V. G. Haase, & P. R Räsänen, P. (Eds.),
International Handbook of Mathematical Learning Difficulties (pp. 407-421). Springer, Cham. https://doi:
10.1007/978-3-319-97148-3_25
Passolunghi, M. C., Vercelloni, B., & Schadee, H. (2007). The precursors of mathematics learning: Working memory, phonological ability and numerical competence.
Cognitive Development, 22, 165–184. DOI:
10.1016/j.cogdev.2006.09.001
Peters, G., De Smedt, B., Torbeyns, J., Ghesquière, P., & Verschaffel, L. (2012). Children’s use of subtraction by addition on large single-digit subtractions.
Educational Studies in Mathematics, 79, 335-349. DOI:
10.1007/s10649-011-9308-3
Purcar, A. M., Bocoș, M., Pop, A. L., Roman, A., Rad, D., Mara, D., … & Triff, D. G. (2024). The effect of visual reasoning on arithmetic word problem solving.
Education Sciences,
14(3), 278. DOI:
10.3390/educsci14030278
Rosyada, M. I., & Wibowo, S. E. (2023). Analysis of mathematics problem-solving ability based on ideal problem-solving steps given student learning styles.
AKSIOMA: Jurnal Program Studi Pendidikan Matematika,
12(1), 1332-1343. DOI:
10.2991/assehr.k.211122.014
Santosa, A. D., & Khotimah, R. P. (2023, June). Mathematical problem solving ability from student’s learning style in material Barisan class XI science 2 senior high school 1 CEPER.
In AIP Conference Proceedings (Vol. 2727, No. 1). AIP Publishing. DOI:
10.1063/5.0141447
Stellingwerf, B. P., & Van Lieshout, E. C. (1999). Manipulatives and number sentences in computer aided arithmetic word problem solving. Instructional Science, 27, 459-476.
Sweller, J., Van Merrienboer, J. G., & Paas, F. (1998). Cognitive architecture and instructional design.
Educational Psychological Review, 10, 251-296. DOI:
10.1023/a: 1022193728205
Syah, A., Harizahayu, H., Al Haddar, G., Annisah, A., & Pratiwi, E. Y. R. (2023). Improving students' mathematical problem-solving ability through the use of external representations.
Journal on Education, 5(2), 5313-5323. DOI:
10.31004/joe.v5i2.1274
Upu, H., Ihsan, H., & Armayanti, A. K. (2024). Solving mathematics problems based on visual information processing. Asian Journal of Education and Social Studies, 50(3), 219-225.
Van Lieshout, E. C., & Xenidou-Dervou, I. (2018). Pictorial representations of simple arithmetic problems are not always helpful: a cognitive load perspective.
Educational Studies in Mathematics,
98(1), 39-55. DOI:
10.1007/s10649-017-9802-3
Verschaffel, L., De Corte, E., & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems.
Learning and Instruction, 4(4), 273-294
. https://doi.org/10.1016/0959-4752(94)90002-7
Wong, W. K., Wu, S. W., Lee, C. W., & Hsu, W. H. (2007). LIMG: Learning-initiating instruction model based on cognitive knowledge for geometry word problem comprehension.
Computers & Education. 48, 582-601. DOI:
10.1016/j.compedu.2005.03.009
Xenidou-Dervou, I., Molenaar, D., Ansari, D., van der Schoot, M., & van Lieshout, E. C. D. M. (2017). Nonsymbolic and symbolic magnitude comparison skills as longitudinal predictors of mathematical achievement.
Learning and Instruction, 50, 1–13.
https://doi.org/10.1016/j.learninstruc.2016.11.001