تأثیر شیوه های ارائه مسائل کلامی حسابی ساده بر کارآمدی پردازش دانش آموزان پایه اول ابتدایی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه آموزشی علوم تربیتی، دانشگاه فرهنگیان، صندوق پستی 889-14665. تهران. ایران.

چکیده

پژوهش حاضر به تعیین تأثیر شیوه­های ارائه متفاوت مسائل کلامی حسابی ساده بر کارآمدی پردازش دانش‌آموزان و مقایسه اثرات متفاوت این شیوه­های ارائه در کارآمدی پردازش دانش‌آموزان قوی و ضعیف در ریاضی پرداخته است. این پژوهش از نوع طرح­های آزمایشی است که طی آن تأثیر شیوه­‌های ارائه مسائل حسابی ساده (تصویری، شنیداری و ترکیبی) بر روی کارآمدی پردازش دانش‌آموزان قوی و ضعیف در ریاضی بررسی شده­ است. جامعۀ آماری این پژوهش شامل همۀ دانش‌آموزان پایه اول ابتدایی شهر یاسوج به تعداد 4049 نفر در سال تحصیلی 1403-1402 بود. مشارکت­کنندگان پژوهش به تعداد 58 نفر (دو گروه 29 نفره) از میان دانش‌آموزان داوطلب انتخاب شدند. ابزار اندازه­گیری از مسائل کتاب ریاضی پایه اول اقتباس گردید و به هر شرکت‌کننده 24 مسئله ارائه شد. به‌منظور تجزیه‌وتحلیل داده­ها از روش تحلیل واریانس اندازه‌گیری مکرر و تحلیل واریانس چندمتغیری (مانوا) استفاده‌ شد. یافته­ها نشان دادند که کارآمدی پردازش هم در دانش‌آموزان قوی و هم در دانش‌آموزان ضعیف در مسائل افزایشی در هر شیوه ارائه نسبت به مسائل کاهشی بیشتر است؛ همچنین کارآمدی پردازش هم در دانش‌آموزان قوی و هم در دانش‌آموزان ضعیف در ارائه ترکیبی نسبت به ارائه تصویری و در ارائه تصویری نسبت به ارائه شنیداری بیشتر بود. دیگر نتایج پژوهش نشان داد که بین دو گروه دانش‌آموزان قوی و ضعیف ازنظر مسائل شنیداری افزایشی و کاهشی، مسائل تصویری افزایشی و کاهشی و همچنین مسائل ترکیبی افزایشی و کاهشی تفاوت معنی‌داری قابل مشاهده است. به‌علاوه نتایج نشان داد که دانش‌آموزان قوی، کارآمدی پردازش بیشتری نسبت به دانش‌آموزان ضعیف در مسائل مختلف با ارائه­های متفاوت دارند. با توجه  به نتایج این پژوهش معلمان و دبیران ریاضی می‌توانند در آموزش‌های خود با استفاده از روش‌های متفاوت ارائه مسائل حسابی ساده، فرایند یادگیری دانش‌آموزان را تسهیل نمایند.

کلیدواژه‌ها

موضوعات


Alamolhodaei, H. (2009). A working memory model applied to mathematical word problem solving. Asia Pacific Education Review, 10(2), 183-192. DOI: 10.1007/s12564-009-9023-2.
Allen, K., Higgins, S., & Adams, J. (2019). The relationship between visuospatial working memory and mathematical performance in school-aged children: A systematic review. Educational Psychology Review, 1-23. DOI: 10.1007/s10648-019-09470-8.
Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20-29. DOI: 10.1016/j.jecp.2009.11.003
Azizi Mahmmodabad, M., Liaghatdar, M. J., & Oreyzi, H. (2019). The effectiveness of teaching image-based arithmetic problems on students' active memory performance and their processing efficiency. Journal of Educational Psychology Studies, 16(35), 165-190. Doi: 10.22111/jeps.2019.5056 [In Persian]
Baddeley, A. D. (2006). Working memory: An overview. Working Memory and Education, 1-31.‏ https://doi.org/10.1016/B978-012554465-8/50003-X
Baddeley, A. D., Hitch, G. J., & Allen, R. J. (2009). Working memory and binding in sentence recall. Journal of Memory and Language61(3), 438-456. https://doi.org/10.1016/j.jml.2009.05.004
Bedyńska, S., Krejtz, I., & Sedek, G. (2019). Chronic stereotype threat and mathematical achievement in age cohorts of secondary school girls: Mediational role of working memory, and intellectual helplessness. Social Psychology of Education, 22(2), 321-335. DOI: 10.1007/s11218-019-09478-6
Berends, I. E., & Van Lieshout, E. C. (2009). The effect of illustrations in arithmetic problem-solving: Effects of increased cognitive load. Learning and Instruction, 19(4), 345-353.‏ https://doi.org/10.1016/j.learninstruc.2008.06.012
Campbell, J. I., Fuchs-Lacelle, S., & Phenix, T. L. (2006). Identical elements model of arithmetic memory: Extension to addition and subtraction. Memory & Cognition34(3), 633-647. DOI: 10.3758/BF03193585
Campbell, J. I. D., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology: General, 130, 299–315. DOI: 10.1037/0096-3445.130.2.299
Carpenter, T. P., & Moser, J. M. (1984). The acquisition of addition and subtraction concepts in grades one through three. Journal for Research in Mathematics Education15(3), 179-202. https://doi.org/10.2307/748348
Davoudi, K., Rostgar, A., & Alamian, V. (2011). First-grade math teacher's book. General Department of Textbook Printing and Distribution. [In Persian]
De Corte, E., & Verschaffel, L. (1981). Children's solution processes in elementary arithmetic problems: Analysis and improvement. Journal of Educational Psychology, 73, 765–779. https://doi.org/10.1037/0022-0663.73.6.765
Demetriou, A., Makris, N., Tachmatzidis, D., Kazi, S., & Spanoudis, G. (2019). Decomposing the influence of mental processes on academic performance. Intelligence77, 101404. https://doi.org/10.1016/j.intell.2019.101404
Dewolf, T., Van Dooren, W., & Verschaffel, L. (2017). Can visual aids in representational illustrations help pupils to solve mathematical word problems more realistically? European Journal of Psychology of Education, 32, 335-351. DOI: 10.1007/s10212-016-0308-7
Educational Research and Planning Organization. (2023). First-grade math. Offset Company. [Persian]
Eysenck, M., Payne, S., & Derakshan, N. (2005). Trait anxiety, visuospatial processing, and working memory. Cognition & Emotion19(8), 1214-1228. https://doi.org/10.1080/02699930500260245 10.‏ DOI: 10.1007/s11858-019-01070-8
Friso-Van den Bos, I., Van der Ven, S. H., Kroesbergen, E. H., & Van Luit, J. E. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29-44. DOI: 10.1016/j.edurev.2013.05.003
Fuchs, L. S., Fuchs, D., Compton, D. L., Hamlett, C. L., & Wang, A. Y. (2015). Is word-problem solving a form of text comprehension? Scientific Studies of Reading19(3), 204-223. DOI: 10.1080/10888438.2015.1005745
Fuchs, L., Fuchs, D., Seethaler, P. M., & Barnes, M. A. (2020). Addressing the role of working memory in mathematical word-problem solving when designing intervention for struggling learners. ZDM Mathematics Education, 52, 87-96. https://doi.org/10.1007/s11858-019-01070-8
Gall, M., Borg, W., & Gal, J. (2004/1381). Qualitative and quantitative research methods in educational sciences and psychology. Translated by Ahmad Reza Nasr et al. Tehran: Samt Publications. [Persian]
Heejung, L., & Hyunjoo, Y. (2023). A study on the representation utilization ability of academic achievement levels in mathematics problem solving: Focusing on the 4th and 6th grades of elementary school.
Hossaini Khah, K., Nikdel, F., & Noushadi, N. (2019). The effectiveness of training self-regulation strategies on processing efficiency and working memory function of high school girl students. Research in Cognitive and Behavioral Sciences, 8(15), 33-48. Doi: 10.22108/cbs.2020.111297.1206 [In Persian]
Izadi, M. (2012). A comparative content analysis of the first-grade math curriculum goals and content of the math textbook in Iran, Japan and America (State of California).  Unpublished Masterʼs Thesis). Islamic Azad University Fars Science and Research Branch, Shiraz, Iran. [Persian]
Kamii, C., Lewis, B. A., & Kirkland, L. D. (2001). Fluency in subtraction compared with addition. The Journal of Mathematical Behavior, 20, 33–42. DOI: 10.1016/S0732-3123(01)00060-8
Lathifaturrahmah, L., Nusantara, T., Subanji, S., & Muksar, M. (2024, February). Analysis of mathematics students’ problem-solving skills in making prediction mathematical representations. In AIP Conference Proceedings (Vol. 3049, No. 1). AIP Publishing.‏
Moradi, A., Afsardeir, B., Parhoon, H., & Sanaei, H. (2016). Cognitive performance of patients with Multiple Sclerosis (MS) in autobiographical, working and prospective memory in comparison with normal people. International Journal of Behavioral Sciences, 10(1), 49-54.
Moradi, A., Cheraghi, F., & Farahani, M. (2008). The effect of anxiety and tasks presentation manner on processing efficiency and performance of components of working memory.  Journal of Modern Psychological Researches, 3(11), 77-98. [In Persian]
Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of Educational Psychology91(2), 358. DOI: 10.1037/0022-0663.91.2.358
Panaoura, A. (2007). The interplay of processing efficiency and working memory with the development of metacognitive performance in mathematics. The Mathematics Enthusiast4(1), 31-52. DOI: 10.54870/1551-3440.1057
Passolunghi, M. C., & Costa, H. M. (2019). Working memory and mathematical learning. In A. Fritz, V. G. Haase, & P. R Räsänen, P. (Eds.), International Handbook of Mathematical Learning Difficulties (pp. 407-421). Springer, Cham. https://doi:10.1007/978-3-319-97148-3_25
Passolunghi, M. C., Vercelloni, B., & Schadee, H. (2007). The precursors of mathematics learning: Working memory, phonological ability and numerical competence. Cognitive Development, 22, 165–184. DOI: 10.1016/j.cogdev.2006.09.001
Peters, G., De Smedt, B., Torbeyns, J., Ghesquière, P., & Verschaffel, L. (2012). Children’s use of subtraction by addition on large single-digit subtractions. Educational Studies in Mathematics, 79, 335-349. DOI: 10.1007/s10649-011-9308-3
Purcar, A. M., Bocoș, M., Pop, A. L., Roman, A., Rad, D., Mara, D., … & Triff, D. G. (2024). The effect of visual reasoning on arithmetic word problem solving. Education Sciences14(3), 278.‏ DOI: 10.3390/educsci14030278
Rasmussen, C., & Bisanz, J. (2005). Representation and working memory in early arithmetic. Journal of Experimental Child Psychology91(2), 137-157. https://doi.org/10.1016/j.jecp.2005.01.004
Rosyada, M. I., & Wibowo, S. E. (2023). Analysis of mathematics problem-solving ability based on ideal problem-solving steps given student learning styles. AKSIOMA: Jurnal Program Studi Pendidikan Matematika12(1), 1332-1343.‏ DOI: 10.2991/assehr.k.211122.014
Santosa, A. D., & Khotimah, R. P. (2023, June). Mathematical problem solving ability from student’s learning style in material Barisan class XI science 2 senior high school 1 CEPER. In AIP Conference Proceedings (Vol. 2727, No. 1). AIP Publishing.‏ DOI: 10.1063/5.0141447
Stellingwerf, B. P., & Van Lieshout, E. C. (1999). Manipulatives and number sentences in computer aided arithmetic word problem solving. Instructional Science, 27, 459-476.
Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction4(4), 295-312. https://doi.org/10.1016/0959-4752(94)90003-5
Sweller, J., Van Merrienboer, J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychological Review, 10, 251-296. DOI: 10.1023/a: 1022193728205
Syah, A., Harizahayu, H., Al Haddar, G., Annisah, A., & Pratiwi, E. Y. R. (2023). Improving students' mathematical problem-solving ability through the use of external representations. Journal on Education, 5(2), 5313-5323.‏ DOI: 10.31004/joe.v5i2.1274
Upu, H., Ihsan, H., & Armayanti, A. K. (2024). Solving mathematics problems based on visual information processing. Asian Journal of Education and Social Studies50(3), 219-225.
Van Lieshout, E. C., & Xenidou-Dervou, I. (2018). Pictorial representations of simple arithmetic problems are not always helpful: a cognitive load perspective. Educational Studies in Mathematics98(1), 39-55. DOI: 10.1007/s10649-017-9802-3
Verschaffel, L., De Corte, E., & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction, 4(4), 273-294. https://doi.org/10.1016/0959-4752(94)90002-7
Wong, W. K., Wu, S. W., Lee, C. W., & Hsu, W. H. (2007). LIMG: Learning-initiating instruction model based on cognitive knowledge for geometry word problem comprehension. Computers & Education. 48, 582-601. DOI: 10.1016/j.compedu.2005.03.009
Xenidou-Dervou, I., Molenaar, D., Ansari, D., van der Schoot, M., & van Lieshout, E. C. D. M. (2017). Nonsymbolic and symbolic magnitude comparison skills as longitudinal predictors of mathematical achievement. Learning and Instruction, 50, 1–13. https://doi.org/10.1016/j.learninstruc.2016.11.001